Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 5(2)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350096

ABSTRACT

A critical limitation in the management of chronic polymicrobial infections is the lack of correlation between antibiotic susceptibility testing (AST) and patient responses to therapy. Underlying this disconnect is our inability to accurately recapitulate the in vivo environment and complex polymicrobial communities in vitro However, emerging evidence suggests that, if modeled and tested accurately, interspecies relationships can be exploited by conventional antibiotics predicted to be ineffective by standard AST. As an example, under conditions where Pseudomonas aeruginosa relies on cocolonizing organisms for nutrients (i.e., cross-feeding), multidrug-resistant P. aeruginosa may be indirectly targeted by inhibiting the growth of its metabolic partners. While this has been shown in vitro using synthetic bacterial communities, the efficacy of a "weakest-link" approach to controlling host-associated polymicrobial infections has not yet been demonstrated. To test whether cross-feeding inhibition can be leveraged in clinically relevant contexts, we collected sputa from cystic fibrosis (CF) subjects and used enrichment culturing to isolate both P. aeruginosa and anaerobic bacteria from each sample. Predictably, both subpopulations showed various antibiotic susceptibilities when grown independently. However, when P. aeruginosa was cultured and treated under cooperative conditions in which it was dependent on anaerobic bacteria for nutrients, the growth of both the pathogen and the anaerobe was constrained despite their intrinsic antibiotic resistance profiles. These data demonstrate that the control of complex polymicrobial infections may be achieved by exploiting obligate or facultative interspecies relationships. Toward this end, in vitro susceptibility testing should evolve to more accurately reflect in vivo growth environments and microbial interactions found within them.IMPORTANCE Antibiotic efficacy achieved in vitro correlates poorly with clinical outcomes after treatment of chronic polymicrobial diseases; if a pathogen demonstrates susceptibility to a given antibiotic in the lab, that compound is often ineffective when administered clinically. Conversely, if a pathogen is resistant in vitro, patient treatment with that same compound can elicit a positive response. This discordance suggests that the in vivo growth environment impacts pathogen antibiotic susceptibility. Indeed, here we demonstrate that interspecies relationships among microbiotas in the sputa of cystic fibrosis patients can be targeted to indirectly inhibit the growth of Pseudomonas aeruginosa The therapeutic implication is that control of chronic lung infections may be achieved by exploiting obligate or facultative relationships among airway bacterial community members. This strategy is particularly relevant for pathogens harboring intrinsic multidrug resistance and is broadly applicable to chronic polymicrobial airway, wound, and intra-abdominal infections.


Subject(s)
Bacteria, Anaerobic/growth & development , Cystic Fibrosis/microbiology , Microbial Interactions , Pseudomonas aeruginosa/growth & development , Sputum/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria, Anaerobic/genetics , Coinfection/microbiology , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Microbiota/genetics , Mucins/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity
2.
Nat Commun ; 11(1): 2287, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385294

ABSTRACT

Culture-independent studies of cystic fibrosis lung microbiota have provided few mechanistic insights into the polymicrobial basis of disease. Deciphering the specific contributions of individual taxa to CF pathogenesis requires comprehensive understanding of their ecophysiology at the site of infection. We hypothesize that only a subset of CF microbiota are translationally active and that these activities vary between subjects. Here, we apply bioorthogonal non-canonical amino acid tagging (BONCAT) to visualize and quantify bacterial translational activity in expectorated sputum. We report that the percentage of BONCAT-labeled (i.e. active) bacterial cells varies substantially between subjects (6-56%). We use fluorescence-activated cell sorting (FACS) and genomic sequencing to assign taxonomy to BONCAT-labeled cells. While many abundant taxa are indeed active, most bacterial species detected by conventional molecular profiling show a mixed population of both BONCAT-labeled and unlabeled cells, suggesting heterogeneous growth rates in sputum. Differentiating translationally active subpopulations adds to our evolving understanding of CF lung disease and may help guide antibiotic therapies targeting bacteria most likely to be susceptible.


Subject(s)
Amino Acids/metabolism , Cystic Fibrosis/microbiology , Lung/microbiology , Microbiota , Protein Biosynthesis , Bacteria/classification , Humans , Pseudomonas aeruginosa/physiology , Sputum/microbiology
3.
NPJ Biofilms Microbiomes ; 5(1): 20, 2019.
Article in English | MEDLINE | ID: mdl-31396394

ABSTRACT

Achromobacter xylosoxidans has attracted increasing attention as an emerging pathogen in patients with cystic fibrosis. Intrinsic resistance to several classes of antimicrobials and the ability to form robust biofilms in vivo contribute to the clinical manifestations of persistent A. xylosoxidans infection. Still, much of A. xylosoxidans biofilm formation remains uncharacterized due to the scarcity of existing genetic tools. Here we demonstrate a promising genetic system for use in A. xylosoxidans; generating a transposon mutant library which was then used to identify genes involved in biofilm development in vitro. We further described the effects of one of the genes found in the mutagenesis screen, encoding a putative enoyl-CoA hydratase, on biofilm structure and tolerance to antimicrobials. Through additional analysis, we find that a fatty acid signaling compound is essential to A. xylosoxidans biofilm ultrastructure and maintenance. This work describes methods for the genetic manipulation of A. xylosoxidans and demonstrated their use to improve our understanding of A. xylosoxidans pathophysiology.


Subject(s)
Achromobacter denitrificans/drug effects , Achromobacter denitrificans/enzymology , Anti-Bacterial Agents/metabolism , Biofilms/drug effects , Drug Tolerance , Enoyl-CoA Hydratase/metabolism , Mutagenesis, Insertional/methods , Achromobacter denitrificans/genetics , Achromobacter denitrificans/growth & development , Biofilms/growth & development , DNA Transposable Elements , Enoyl-CoA Hydratase/genetics , Gene Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...